
Enhancing Model Learning and Interpretation using
Multiple Molecular Graph Representations for
Compound Property and Activity Prediction

Apakorn Kengkanna
Department of Computer Science

School of Computing
Tokyo Institute of Technology

Kanagawa, Japan
kengkanna@li.c.titech.ac.jp

Masahito Ohue
Department of Computer Science

School of Computing
Tokyo Institute of Technology

Kanagawa, Japan
ohue@c.titech.ac.jp

Abstract—Graph neural networks (GNNs) demonstrate great
performance in compound property and activity prediction
due to their capability to efficiently learn complex molecular
graph structures. However, two main limitations persist includ-
ing compound representation and model interpretability. While
atom-level molecular graph representations are commonly used
because of their ability to capture natural topology, they may
not fully express important substructures or functional groups
which significantly influence molecular properties. Consequently,
recent research proposes alternative representations employing
reduction techniques to integrate higher-level information and
leverages both representations for model learning. However, there
is still a lack of study about different molecular graph representa-
tions on model learning and interpretation. Interpretability is also
crucial for drug discovery as it can offer chemical insights and
inspiration for optimization. Numerous studies attempt to include
model interpretation to explain the rationale behind predictions,
but most of them focus solely on individual prediction with
little analysis of the interpretation on different molecular graph
representations. This research introduces multiple molecular
graph representations that incorporate higher-level information
and investigates their effects on model learning and interpretation
from diverse perspectives. Several experiments are conducted
across a broad range of datasets and an attention mechanism is
applied to identify significant features. The results indicate that
combining atom graph representation with reduced molecular
graph representation can yield promising model performance.
Furthermore, the interpretation results can provide significant
features and potential substructures consistently aligning with
background knowledge. These multiple molecular graph repre-
sentations and interpretation analysis can bolster model compre-
hension and facilitate relevant applications in drug discovery.

Index Terms—drug discovery, machine learning, graph neural
network, molecular graph representation, interpretation, atten-
tion mechanism

I. INTRODUCTION

Drug discovery processes have been driven by various ad-
vanced artificial intelligence techniques, particularly chemical
properties and activity prediction. Such methods can accelerate
the research processes by providing high-throughput results,
decreasing cost, saving time before conducting biochemical
experiments [1]. Graph neural network (GNN) is a potential

technique that is gaining popularity in this field because of
its exceptional performance and ability to learn natural and
expressive features from molecular graph representation using
node and edge relationships [2]. However, there are two main
important issues for GNNs, including the way to represent the
compounds and the interpretability of the model.

In general, most research represents the compounds using
atom-level molecular graph representation, in which nodes
and edges represent atoms and bonds, respectively. This
representation provides a natural structure of the molecule
and has been used commonly in many applications [3],
[4]. Although atom-level molecular graph representation has
the advantage of capturing all elements and topology of
compound, it has limitations due to a lack of information
about substructures, containing functional groups or pharma-
cophore features, which play important roles in identifying
property and interaction of compound [5]. To capture large
substructures, the learning depth of GNNs should be increased,
which might cause an over-smoothing problem when the
nodes end up with similar embeddings [6]. Moreover, due
to the detailed representation, the interpretation results are
sometimes scattered and inconsistent within the same sub-
structure [7]. Therefore, recent research suggests alternative
ways to represent compounds using the reduction techniques.
This technique constructs the abstract molecular graph by
collapsing a group of atoms into a single node and encoding
it with higher-level information using arbitrary or knowledge
rules, such as frequently-occurring substructures, predefined
functional groups, or pharmacophoric features, while preserv-
ing the topological structure [8], [9]. There are several types of
reduced molecular graph representations that vary in their level
of specificity and degree of aggregation. Many studies take
advantage of both atom-level molecular graph representation
and reduced molecular graph representation by embedding
the compounds with both representations and show great
performance in various applications [5], [10], [11]. However,
different reduced molecular graphs may not be applicable for
all tasks, and there is still less research and analysis on how to
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effectively integrate multiple molecular graph representations
to support model learning and interpretation.

Another key issue with GNNs is their interpretability. GNNs
can be considered black-box models since they are complex
and less interpretable by design. Low interpretability restricts
ability to understand the reasoning behind the prediction, hin-
ders model improvement, and can lead to low acceptance from
users in some domains. Therefore, interpretation techniques
have been introduced to address these issues by rationalizing
the prediction results and producing more transparent mod-
els for humans. [12], [13]. In drug discovery, interpretation
promotes several advantages, for instance, capturing important
chemical features, extracting underlying scientific insights, and
offering guidance for the next optimization process. Moreover,
interpretation allows model developers to debug and avoid
bias. On top of that, the explainable results can enable safety
measures, increase confidence, and build trust [12], [14].
Several works have studied the explanation of GNNs [15],
[16], especially the attention-based mechanism [11], [14],
[17]. However, most attention-based interpretations provide
the explanation only on a certain view of a single prediction,
which may not fully imply the overall learning of the model.
In addition, there is a lack of research on the interpretation
analysis of different molecular graph representations on real
pharmaceutical endpoint datasets.

Based on these limitations, this research aims to inves-
tigate multiple molecular graph representations with GNNs
for molecular property/activity prediction, and to provide
chemically meaningful explanations in various views to im-
prove interpretability with appropriate evaluation. The research
workflow is outlined in Fig. 1. The major contributions are:

• Introducing and performing analysis on different molec-
ular graph representations using reduction techniques on
different levels of information.

• Incorporating multiple molecular graph representations
into model learning and performing several extensive
experiments on the relevant datasets.

• Integrating an interpretation module using an attention-
based mechanism to extract significant features and pre-
senting the explainable results in many viewpoints to-
gether with the evaluation with background knowledge
to enhance model understanding and interpretability.

II. MATERIALS AND METHODS

A. Molecular Graph Representations

A molecule can be depicted as a graph structure to describe
its chemical topology in term of the relationships between
nodes and edges. The features can be constructed using nodes,
edges, and an adjacency matrix. With those features, a graph or
a subgraph can hold interpretable meaning related to chemical
knowledge [18]. Different graph topologies are available to
visualize the molecule in a specific level of information. In
this study, four distinct molecular graph representations are
investigated as shown in Fig. 2. The details and characteristics
of each representation are described below and the summary
of node and edges features is organized in Table I.

1) Atom graph (A) is the most common and simplest
representation in which an atom is represented as a node
and a bond is represented as an edge. This representation
presents the compound in a natural form and main-
tains all topological information including substituent
positions. The node and edge properties are typically
derived from the properties of the atom and bond.
There are many applications using atom graph, including
molecular property prediction and drug-target interac-
tion [5], [19]. The drawbacks are the lack of substructure
information, over-smoothing problems when increasing
model depth, and sparse interpretation.

2) Pharmacophore graph (P) represents node features
associated with binding activity and pharmacophoric
information using the extended reduced graphs (ErG)
algorithm [20]. The node is encoded by the combina-
tion of six features including H-bond donor, H-bond
acceptor, positive, negative, hydrophobic, and aromatic.
This graph shows great performance in scaffold hopping
and protein-ligand interaction tasks [9], [10], but the
representation is limited to only six predetermined node
types for this specific algorithm.

3) JunctionTree graph (J) is widely used in molecule
generation tasks [21]. The original atom graph is trans-
formed into a tree-based structure by converting bonds,
rings, and junction atoms into nodes. This no-loop
structure gives an advantage to message-passing learning
by reducing the dead-loop problem and repeated infor-



TABLE I: Features of molecular graph representations

Graph #Node features #Edge Features Node Features Edge Features

Atom (A) 79 10 Atom properties Bond Properties
Pharmacophore (P) 6 3 Predefined node types from

Extended Reduced Graphs (ErG)
Types of connected nodes

JunctionTree (J) 83 6 Edges, rings, and intersection atoms
with number of each atom

Types of connected nodes

FunctionalGroup (F) 115 20 Predefined types of edges, rings,
and functional groups

Types of connected nodes
and number of intersections

Pharmacophore
Graph

JunctionTree
Graph

FunctionalGroup
Graph

Atom
Graph

Fig. 2: Different molecular graph representations of aspirin

mation issues [5], [11]. By the way, this representation
also does not include functional groups and ring types,
and there are difficulties in forming complex rings.

4) FunctionalGroup graph (F) is the representation that
integrates functional group information by changing a
subgraph into a single node using predefined functional
groups, ring types, and atom pairs [6], [22], [23]. It
allows higher-level understanding of node features with
chemical background. However, this representation still
has limitations in representing complicated rings and
functional groups that cannot be fully predefined.

B. Graph-based Model Interpretation

An attention mechanism is employed in this study to extract
the interpretation from the model. The attention mechanism
implicitly assigns the attention weights to the nodes so that
more important nodes will receive higher weights during
neighborhood aggregation [24]. Attention mechanism is in-
troduced inside the model and learned during the model train-
ing to improve performance. Therefore, explaining attention
weights would be useful for understanding model learning.

To visualize the interpretation, most of the research focuses
on local-level explanation of a single prediction which may
not convey the overall reasoning of model. This research
proposes three different views of interpretation to provide
a comprehensive understanding and new insights. Different
evaluation methods are used to verify the interpretation of
different views.

1) Single prediction view illustrates the interpretation of
individual molecule prediction and examines the results
with background knowledge. For the ligand binding
activity task, this interpretation can be compared with

the binding mode observed from the interaction map
of complex structures. This view shows the specific
important portion of a single molecule, which can inspire
compound optimization and simplification task.

2) Node features view visualizes interpretation in collec-
tions of node features presented in the specific plot.
The evaluation can be analyzed with general background
knowledge. This view provides a general understanding
of collection of molecules in dataset for trend analysis.

3) Potential substructures view analyzes interpretation in
the format of structural patterns to provide chemically
intuitive understanding. The molecules are fragmented
into substructures and the substructures with outstand-
ingly high attention weights based on detection rules
are collected and defined as potential substructures.
These potential substructures are then assessed with
the key structural patterns reported in the literature for
evaluation. This view benefits for suggesting interesting
structural modification or subsequent optimization.

III. EXPERIMENTS

A. Datasets

This study utilizes two sets of datasets to validate model
performance and interpretation. One dataset comes from
MoleculeNet [25], which are the general benchmarks widely
used in the field of compound property prediction. Another
dataset contains seven pharmaceutical endpoints obtained from
various sources. These datasets are important for validating
intepretation because they have been extensively reviewed
and reported about task-related substructures that are relevant
to specific properties and activities, so-called key structural
patterns. This research aims to validate the interpretation
results based on the assumption that the interpretation results
should be able to identify trends and potential substructures
corresponding with those key structural patterns. Table II
summarizes all datasets in this study.

B. Model Architecture

The model is designed and inspired by AttentiveFP [19]
and its variants [3], [32]. There are 4 components for GNN
learning as shown in Fig. 3. Firstly, the node and edge
encoding module encodes the initial node and edge features
from each molecular graph representation into the fixed-size
vectors. Secondly, the node embedding module is implemented
to learn node and edge features by using modified graph



TABLE II: Datasets statistics

Dataset Task #Compounds Positive/
Negative

Benchmarks from MoleculeNet
BACE [25] Classification 1,513 1.19
BBBP [25] Classification 2,050 0.31
FreeSolv [25] Regression 642 -
ESOL [25] Regression 1,128 -
Lipo [25] Regression 4,200 -
Pharmaceutical Endpoints
AmesMutag [26] Classification 6,512 1.16
hERG20 [27] Classification 6,548 1.99
CYP2C8 [28] Classification 553 1.41
Hepatotoxicity [29] Classification 1,489 1.12
HumanPPB [14] Regression 3,921 -
AqSolDB [30] Regression 9,982 -
HIV1 [31] Regression 2,602 -

isomorphism network (GIN) that takes edge features in neigh-
boring aggregation [33]. This step integrates the use of gate
recurrent units (GRUs) before updating each node because
GRUs show good ability in controlling information to be
aggregated or reserved from neighboring nodes [32]. The
third component is a molecule embedding module with an
attention mechanism. In this step, the concept of a virtual
super-node connecting all nodes in the graph is introduced
to readout features from all node embeddings using a graph
attention network (GAT). This component also integrates the
GRUs to retain and filter pooled features resulting in molecule
embedding. Importantly, the GAT readout in this module
provides attention weights for each node in the graph which
will be used as the interpretation. The nodes that receive
high attention weights are assumed to be important for that
particular prediction. The last component is the prediction
module which combines molecule embeddings from multiple
graphs and performs classification or regression using fully
connected layers accordingly.

C. Feature and Experiment Setup

This study conducts experiments on various datasets with
several graph representations. There are 4 experimental
schemes, including Atom graph (A) and the combinations
of the atom graph with another reduced molecular graph,
which are Pharmacophore graph (A+P), FunctionalGroup
graph (A+F), and JunctionTree graph (A+J). For the scheme
of combining two molecular graph representations, there is a
special process to initialize reduced molecular graph node fea-
tures. Apart from the original node features, the node features
of the reduced molecular graph are enriched by expanding
with the pooled node features from the corresponding nodes
in the atom graph using sum-pooling as shown in Fig. 3.

D. Training and Hyperparameter Tuning

The datasets are divided into train, validation and test sets
in the ratio of 8 : 1 : 1. The splitting method is suggested
based on the original paper if specified; otherwise, random
splitting is used. The models are trained using 5-fold cross-
validation, and hyperparameter tuning is performed using
Optuna library [34]. The major hyperparameters are batch

size, dimensions of hidden layers, and number of node and
molecule embedding layers for atom graph and reduced graph.
The molecule embedding size is set to 256 dimensions. The
learning rate, weight decay, dropout rate and batch normal-
ization are set appropriately for each dataset. AUROC and
RMSE are used as performance measures for classification
and regression tasks, respectively. All models are trained for
300 epochs, but training is stopped if the performance of the
validation set is not improved for 30 epochs.

E. Interpretation Extraction

The interpretation of the model is extracted from the at-
tention mechanism during the molecule embedding module.
For each graph, the attention weights at the edges connected
to a virtual super-node are extracted and normalized using
the min-max algorithm. For a reduced molecular graph, the
interpretation can be visualized using the node features directly
or using the mapping function method to the original atom
graph. For the later method, the attention weights at the nodes
are mapped back to the corresponding nodes in the original
atom graph. Then, the min-max normalization is also applied.
In the case of multiple graphs, after the attention weights are
mapped back to the original atom graph, the attention weights
are merged by selecting the max attention weights among all
graphs to give high priority to the focused part of the molecule.
The extracted attention weights are visualized on the different
views to provide an intensive understanding of the model.

For the potential substructures view, the potential substruc-
tures are extracted using the following procedures. Firstly,
the compounds are fragmented using fragmentation methods
including BRICS [35], RECAP [36], and GRINDER [14] to
get all possible fragments with 3–20 atoms. The fragments
having a median of attention weights greater than 75th per-
centile of molecule attention weights are labeled as important
fragments. Then, calculate the important fragment percentage
between compounds having those fragments and compounds
having those fragments which are labeled as important. Next,
the fragment importance score followed from [37] is used
to quantify the significance of the fragments. Basically, the
fragment importance score is calculated by the summation
of the difference between the average attention weights of
fragment and the average attention weights of the compound
divided by the number of fragments. Finally, the fragment is
considered as potential substructure if it passes all of these
conditions: 1) The important fragment percentage is greater
50%. 2) The number of compounds having that fragment
which is labeled as important is large enough for each dataset.
3) The fragment importance score is greater than zero. After
removing redundancies, the final potential substructures are
analyzed and evaluated with the key structural patterns re-
ported in the literature.

IV. RESULTS AND DISCUSSION

A. Model Performance

The performance of the models is presented in Table III and
Table IV. The results show that combining the atom graph
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with a reduced molecular graph often leads to moderately
better performance compared to using the atom graph alone.
Notably, FunctionalGroup and Pharmacophore Graph combi-
nations show promise based on their average ranking for all
datasets. Even though different graph representations produce
acceptable performance, they are inconsistent across each
dataset. According to the characteristics of each dataset, cer-
tain combinations can positively facilitate model learning by
providing meaningful features. On the other hand, some com-
binations can negatively affect the performance by introducing
irrelevant features, causing bias, and increasing complexity.
Therefore, the selection of molecular graph combinations
and additional feature engineering should be appropriately
considered depending on the nature of the datasets.

B. Interpretation Results

To validate the interpretation results, different perspectives
of interpretation from attention weights are demonstrated and
compared with chemical background knowledge. These results
are obtained from the entire dataset using the model that
produces highest performance on validation set.

Starting with the single prediction view, taking CYP2C8
dataset as the first example, the troglitazone molecule has been
reported as a significant inhibitor for the CYP2C8 target [28].
The attention weights compared with the interaction map of
the complex PDB:2VN0 are shown in Fig. 4(a). Model A, A+F
and A+P are able to recognize the part of ether oxygen in the
middle of the molecule, which can form a hydrogen bond with
the residues using nearby water molecules. While, model A+F,
A+J, and A+P can positively identify the thiazolidinedione
fragment, which contains ketone oxygen that can form a
hydrogen bond with target residues. These results align with
the discussion in [28]. Despite the different results from each

model, their interpretations can well capture the main parts
corresponding to the interaction region.

Another example comes from BACE dataset. Umibecestat
or CNP520 was discovered as a potent small molecule in-
hibitor of BACE1 [38]. The attention weights from the model
are compared with the interaction map from PBD:6EQM, as
shown in Fig. 4(b). Although the models cannot clearly capture
the part of the oxazine nitrogen that mainly forms interactions
with target residues, they still give high focus on the region
of oxazine that contributes to the binding mode, and also put
high attention weight to oxazine oxygen that accepts H-bonds
from water molecules, as described in [39]. This implies that
the interpretation can relatively capture the important binding
regions for ligand activity.

Next is the node features view. AqSolDB dataset is used as
an example for this analysis. This dataset serves as a regres-
sion task that predicts the aqueous solubility of compounds.
To visualize the significant features for a specific range of
predictions, the compounds predicted as soluble and highly
soluble (LogS > −2) as classified in [30] are selected for
analysis. The average attention weights of each node feature
are recorded and plotted on the graph. As shown in Fig. 5,
the significant features can be easily observed in the area of
high average attention weights and high number of feature
nodes. As a result, the node features containing oxygen and
nitrogen receive more importance in this case. These features
are important because they are likely to form hydrogen bonds
with solvents. Interestingly, the carbon atom and the aromatic
ring of carbon atoms seem to attain low attention weights
for all models. Evidently, the node features of combination
graphs can clearly convey high-level information that is more
meaningful than that of an atom graph. As such, incorporating
higher-level information node features into the model can di-



TABLE III: Model performance of test datasets on classification task (AUROC)

Model BACE BBBP AmesMutag hERG20 CYP2C8 Hepatotoxicity

A 0.7090 (0.0245) 0.8828 (0.0187) 0.8604 (0.0056) 0.9227 (0.0057) 0.8553 (0.0088) 0.7184 (0.0087)
A+F 0.7320 (0.0279) 0.8859 (0.0032) 0.8680 (0.0040) 0.9275 (0.0043) 0.8505 (0.0146) 0.7724 (0.0131)
A+P 0.7412 (0.0175) 0.8922 (0.0056) 0.8649 (0.0033) 0.9233 (0.0067) 0.8506 (0.0202) 0.7470 (0.0118)
A+J 0.7483 (0.0323) 0.8747 (0.0077) 0.8611 (0.0019) 0.9231 (0.0048) 0.8443 (0.0101) 0.7322 (0.0187)

The underlined numbers are the best performance of each dataset. The numbers in parentheses are the standard deviations.

TABLE IV: Model performance of test dataset on regression task (RMSE)

Model FreeSolv ESOL Lipo HumanPPB AqSolDB HIV1

A 1.5053 (0.0731) 0.7276 (0.0488) 0.5839 (0.0139) 0.1347 (0.0083) 1.0115 (0.0261) 1.2817 (0.0425)
A+F 1.2677 (0.0826) 0.7460 (0.0570) 0.5926 (0.0128) 0.1389 (0.0130) 0.9816 (0.0185) 0.9914 (0.0336)
A+P 1.3744 (0.0792) 0.6761 (0.0188) 0.5915 (0.0118) 0.1312 (0.0140) 0.9882 (0.0189) 1.3492 (0.1630)
A+J 1.3772 (0.0097) 0.7362 (0.0307) 0.5765 (0.0189) 0.1627 (0.0094) 1.0016 (0.0197) 1.1041 (0.0499)

The underlined numbers are the best performance of each dataset. The numbers in parenthesis are the standard deviations.
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Fig. 4: Interpretation on single prediction view from attention weights. For the multiple graphs scheme, the mapping and
combination function are applied to visualize on original atom graph. (a) Troglitazone and the interaction map with CYP2C8
complex (PDB:2VN0) (b) Umibecestat (CNP520) and the interaction map with BACE-1 complex (PDB:6EQM)

rectly provide comprehensive results without requiring further
processing.

Finally, in the the potential substructures view, the
molecules are fragmented into small substructures. Substruc-
tures with high attention weights are then identified as poten-
tial substructures based on detection rules. Fig. 6 displays the
potential substructures extracted from compounds predicted
as positive (class 1) in AmesMutag dataset. The interpretation
results can extract potential substructures that are consistent
with the key structural patterns summarized in [40], specifi-
cally, the fragments containing nitro, nitroso, three-membered
heterocycle, and chroline. There are some interesting findings
from different models; for example, sulfonate-bonded carbon
atom groups are captured by models A, A+F, and A+P, which
are also additional important alerts of this dataset. Model A
and A+J can identify bromine, an aliphatic halide in addition
to chlorine, which is also an important alert of this dataset [40].
These results offer very useful scientific information that could
be used as a guide for structural modification and other
relevant tasks.

V. CONCLUSION

We proposed multiple molecular graph representations using
graph reduction techniques to create higher-level molecular
graph features. Numerous experiments had been performed
on various datasets for molecular property/activity predic-
tion. This study had shown that different molecular graph
representations provided different levels of information that
could support model prediction and interpretation. While
combining multiple graph representations could slightly im-
prove performance for most datasets, the performance still
varied depending on the dataset. Therefore, it was crucial
to carefully consider selecting graph representations and fea-
ture engineering for building prediction models. Aside from
the above-mentioned molecular graph representations, there
are other interesting and plausible graph representations that
should have been explored in future work. These include 3D
molecular graph, fragment-based molecular graph, or learned
molecular graph representation, which provide a useful as-
pect of chemical features. Attention-based interpretations from
multiple perspectives could promote a better understanding of
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Fig. 5: Interpretation on node features view. These graphs plot the average attention weights of each node feature with the
number of feature nodes in the entire dataset. The orange dots represent the node features from the atom graph. The blue dots
represent the node features from the reduced molecular graph according to the scheme.

model predictions which were also relatively consistent with
chemical knowledge. These interpretations provided insightful
findings that could possibly facilitate subsequent processes,
such as molecular optimization and structural modification in
drug discovery applications in the future.
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