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Abstract— Protein language models (pLM) are beneficial to
build antibody property prediction models. However, current
pLMs lacks the ability to understand antibody properties because
region and structure information is not effectively embedded.
We propose the Region-Empowered Antibody Language Model
(REALM), a pLM built by multi-task pretraining strategy of
residue prediction and region prediction tasks in antibodies, to
incorporate not only co-evolution but also region information
of antibodies. We demonstrate that our REALM improves the
understanding of antibody properties, including hydrophobicity
and thermo-stability.

Index Terms—Antibody Property Prediction, Protein Lan-
guage Model, Property Prediction, Biopharmaceutical

I. INTRODUCTION

To reduce the manufacturing costs of antibody drugs, it
is crucial to predict physicochemical properties such as hy-
drophobicity and thermo-stability from antibody sequences.
Recent emerging protein language models (pLMs) are ben-
eficial for predicting antibody properties. As the pLM is
pretrained on a large amount of protein sequence, the model
can predict antibody properties even though it is fine-tuned
using only a small amount of data regarding the target task.

However, current pLMs face challenges due to their fo-
cus on learning antibody co-evolution rather than antibody
properties. Therefore, although existing pLMs are useful for
understanding the mutation effects, they are still insufficient
for understanding antibody properties.

This study aims to build a more effective pLM to understand
antibody properties by using region information of antibodies.
The region information of antibodies, including loops and
turns, significantly influences their properties, so the accuracy
of the antibody property prediction improves.

II. METHOD

We propose Region-Empowered Antibody Language Model
(REALM), which embeds not only antibody sequences but
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Fig. 1. An overview of REALM pretraining. REALM is pretrained with two
tasks: masked language model and region prediction tasks.

also region information into the pLM. Fig. 1 shows an
overview of our pretraining strategy. We employ a multi-task
pretraining to embed both the amino acid residues in the
antibody sequence and the region information they belong to.

REALM uses two language model head layers; language
model head layer (LM Head) and region prediction head
layer (RP Head). We employed the region prediction task
as an auxiliary task for embedding region information of the
residues in the antibody sequence. The LM Head outputs the
probabilities of the masked residues, and the RP Head outputs
the probabilities of the region each residue belongs in the input
antibody sequence. The total loss is the sum of the losses for
both the residue prediction task and the region prediction task.

We use nine strands (from strand A to strand G) and
three complementarity determining regions (from CDR1 to
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Fig. 2. An example of IMGT Collier de Perles [2].
Each residue in the antibody sequences is assigned to the corresponding
numbering position.

CDR3) to represent region information to pretrain REALM. To
obtain region information, we use ImMunoGeneTics (IMGT)
system [1]. Fig. 2 shows an example of IMGT numbering and
region information of an antibody. Amino acid residues within
number 1 to number 15 belong to strand A, and residues within
number 27 to number 38 belong to the CDR1 region. While
the CDRs and turn regions tend to be exposed on the surface of
the antibody, large parts of the strands are not exposed on the
surface. This region information affects the extent of exposure
of each amino acid residue, and therefore contributes to the
prediction of the properties of antibodies.

III. EXPERIMENTS

Pre-training Datasets of REALM
To pre-train our REALM, we use OAS database, the largest
sequence database of observed antibody repertoires [3]. The
OAS database contains heavy and light chain sequences in
variable domain of antibodies with their germline and IMGT
numbering. The OAS database was downloaded from OAS
in May 2023, and after preprocessing, 10,446,660 heavy and
1,423,425 light sequences were obtained for pretraining.
Fine-tuning Datasets
We use dataset in [4] with three assays; the PSR (Poly-Specific
Reactivity), HIC-RT (hydrophobicity) and T-Mid (Temperature
of protein denaturation). All missing assay data were removed
from the dataset. The dataset included 485 antibodies for HIC-
RT assay, 535 antibodies for T-Mid assay, and 483 antibodies
for PSR assay. In the fine-tuning and evaluation process, we
show performance after hyperparameter tuning with 10-fold
cross validation, then testing on unseen, and sufficiently unique
holdout data.

A. Models and Training

REALM is a model of a similar parameter size to ESM2-
30M 1, which uses the same hyperparameters. We employ

1https://huggingface.co/facebook/esm2 t12 35M UR50D/blob/main

TABLE I
RESULTS OF THE FINE-TUNING EXPERIMENT.

Predicted Assays
Model HIC-RT T-Mid PSR

AbLang [10] 0.56 0.54 0.25
BALM [11] 0.45 0.38 0.22
REALM without Region Prediction task 0.47 0.48 0.22
REALM (proposed model) 0.59 0.55 0.24
All scores are the Spearman rank correlation coefficients between
prediction and ground truth. Bolded font indicates the best result.

several improvements for transformer model architecture; ro-
tary embedding (RoPE) [5], SwiGLU for activation function
[6] and RMS norm [7] for layer normalization with layer
normalization epsilon hyperparameter of 1× 10−5.

REALM to be pretrained for heavy chain (REALM-H) for
120,000 steps with 2,000 warm up steps, and for light chain
model (REALM-L) for 20,000 steps with 2,000 warm up steps.
For both models, learning rate is 2×10−4 and hyperparameter
λmlm for multi-task learning is 0.9. REALM was pretrained
with 4 NVIDIA H100 GPUs for 10 hours. We employ
Lasso regression model [8] for prediction three assays with
REALM embeddings. A regression layer comprises a multi-
layer perceptron, and the output hidden tensor of REALM-H
and REALM-L are concatenated and fed into the regression
layer. We train the model with 10-fold cross validation and
we optimize the hyperparameters with Optuna [9].

IV. RESUTLS

To evaluate REALM’s ability to understand antibody prop-
erties, we conducted an fine-tuning experiment on the dataset
with three assay [4]. We cannot directly evaluate the perfor-
mance of pretraining of pLM, so we indirectly evaluated the
performance of the pLMs through the fine-tuning task.

Table. I shows an evaluation result of fine-tuning exper-
iment. Our REALM shows improvements in both HIC-RT
and T-Mid compared to previous pLMs. However, there is no
improvement in PSR. HIC-RT relates to hydrophobicity and
T-Mid relates to denaturation temperature; therefore, this result
suggests that our REALM can understand antibody properties
more appropriately. However, the region information of the
antibody is not very relevant to the polyspecificity of the
antibody, so the PSR score is not improved.

V. DISCUSSION

A. Ablation Study

To evaluate the effect of differences in pretraining methods
on the antibody language models, we investigated the behav-
ior within the antibody language models. Fig. 3 shows the
attention weights to obtain the sequence embedding represen-
tation in the heavy chain models of REALM and AbLang,
respectively. All attention weights are shown as normalized
weights along with the X-axis, that is, the residues of the input
sequence. Compared with the attention weights in AbLang
model, the attention weights for REALM indicate that atten-
tion is focused on the input tokens at positions 39, 56, and
65. The input tokens for these positions are located at the
boundaries of the regions, so our REALM, pretrained on the



7106

EVQLLESGG GLVKPGGSLRLSCAASGFIF SDYSMNWVRQAPGKGLEWVSSISSS SGYIYYA DSVK GRFTISRDNAKNSLYLQMNSLRADDTAVYYCARRAYGSG TSPQYFDYWGQGTLVTVSS

Attention Weights in REALM-30M

Attention Weights in AbLang

Strand A Strand B CDR1 Strand C Strand C’ CDR2 Strand C’’ Strand D Strand E Strand F CDR3 Strand G

T
ra

n
sf

o
rm

e
r 

L
a

ye
r

T
ra

n
sf

o
rm

e
r 

L
a

ye
r

IMGT numberings and regions of each residue in the heavy chain sequence

IMGT numberings and regions of each residue in the heavy chain sequence

EVQLLESGG GLVKPGGSLRLSCAASGFIF SDYSMNWVRQAPGKGLEWVSSISSS SGYIYYA DSVK GRFTISRDNAKNSLYLQMNSLRADDTAVYYCARRAYGSG TSPQYFDYWGQGTLVTVSS

Strand A Strand B CDR1 Strand C Strand C’ CDR2 Strand C’’ Strand D Strand E Strand F CDR3 Strand G

Fig. 3. An example of normalized attention weights in our REALM and AbLang [10] models. The horizontal axis shows the number of each residue and
the region it belongs to in the input antibody sequence in the IMGT numbering system, and the vertical axis indicates the layers of the transformer layer in
the antibody language model. The attention weights are all normalized along with the x-axis, that is, the residues of the input sequence. The positions where
amino acid residues are missing correspond to the missing numbers in IMGT’s unique numbering system.

task of region prediction, pays more attention to the region
boundaries, and in turn, the region information is embedded
in the model.

In AbLang, the weight of attention for the first token
is higher. This is because AbLang uses absolute position
embedding; therefore, it is necessary to measure the relative
distance to the first token in order to determine the relative
position of the residues within the antibody. In REALM, the
attention weights of the tokens in the middle of the sequence
are higher than those in the first token. This is due to the
application of RoPE positional embedding [5]. In antibody
sequences, the middle part of the sequence, especially the area
around the CDR, is more important for understanding antibody
characteristics than the end of the sequence. Therefore, we
assume that our REALM is able to focus on the important
parts of antibody sequences more appropriately than AbLang.

VI. CONCLUSION

We propose a Region-Empowered Antibody Language
Model (REALM) that uses multi-task learning with token
prediction and the region prediction task. The evaluation
results showed that REALM improves the accuracy of the
two assays, hydrophobicity and thermal stability. This result
and analysis of attention weights demonstrate that the region
information is embedded effectively. In the future, we will
additionally combine the pre-training task to embed physico-
chemical information to our antibody language model.
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