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Abstract—Monoclonal antibodies (mAbs) offer significant ther-
apeutic benefits; however, their formulation requires careful opti-
mization to prevent instability. Standard practices for determin-
ing optimal formulation conditions rely on time-consuming and
costly wet lab experiments. We developed a machine learning-
based approach to predict the optimal pH value for stabilizing
mAbs using only their amino acid sequences by leveraging a
protein language model. Due to the absence of directly relevant
methods, we established a baseline by comparing various com-
binations of elements. We also conducted feature engineering to
enhance the predictive performance by incorporating structural
information and descriptors. Our approach achieved a high
Pearson correlation coefficient of 0.88 on the test folds from 10-
fold cross-validation, highlighting its potential to complement wet
lab experiments and increase the efficiency of mAb formulation.

Index Terms—Biopharmaceutical, Antibody Formulation Pre-
diction, Protein Language Model

I. INTRODUCTION

Monoclonal antibodies (mAbs) represent a significant ad-
vancement in therapeutic medicine, offering targeted treatment
options for a variety of diseases [1]. However, their inherent
instability poses challenges for long-term storage. To ensure
mAb therapies remain effective and safe, formulation con-
ditions must be optimized to enhance stability, particularly
concerning excipients and the pH value of the solution.

Some studies have investigated factors contributing to the
instability of antibodies and have proposed policies for their
formulation [1]. However, the mechanisms underlying these
instabilities are complex and not fully understood. Therefore,
optimizing formulation conditions generally relies on time-
consuming and expensive wet lab experiments, which include
multiple assays to determine the most stable conditions.

Recent advances have introduced dry laboratory approaches
that use machine learning to predict aspects of antibody

stability, such as hydrophobicity [2], [3], and thermal stability
[4]. Although these methods offer valuable insights, they are
mainly intended for screening purposes and do not lead to the
optimal formulation conditions. There have been prior study
that have used machine learning to predict the pH value at
which mAbs are stable [5], but the pH values addressed were
defined based on conformation and were usually more acidic
(approximately pH 2–3.5) than neutral (approximately pH 4.8–
8), which is often used in the final formulation [6]. Our method
aimed to provide an accurate prediction of the pH value within
this general range.

The proposed method employs machine learning techniques
to predict the optimal pH value for stabilizing mAbs. First, the
amino acid sequence of the mAb was processed using a protein
language model (pLM) [7]–[9]. These features were then
aggregated and input into a regression model trained to corre-
late extracted features with known pH values associated with
mAb formulations. To enhance the predictive performance, the
method emphasizes extracting features from residues which
are crucial for stability [10]. Additionally, existing descriptors
[11] were integrated with the pLM features, improving the
predictive performance.

II. RELATED WORK

A. Descriptors

To effectively handle protein amino acid sequences in ma-
chine learning and statistical analyses, various descriptors have
been proposed. These descriptors were designed using expert
knowledge and provide numerical representations reflecting
the biophysical or structural properties of amino acids within
a sequence. Common examples include T-scale [12], FASGAI
[13], Cruciani Properties [14], and ProtFP [15].

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 B

io
in

fo
rm

at
ic

s a
nd

 B
io

m
ed

ic
in

e 
(B

IB
M

) |
 9

79
-8

-3
50

3-
86

22
-6

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

B
IB

M
62

32
5.

20
24

.1
08

22
00

9

240

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works.



B. Protein Language Models

Protein Language models (pLMs) are machine learning
models designed to understand and predict various properties
of proteins based on their amino acid sequences. Unlike
traditional descriptors, pLMs automatically learn vector rep-
resentations of proteins. These models are utilized in various
downstream tasks, such as protein function prediction.

In recent years, several types of pLMs have been proposed.
General pLMs: These models are trained on a broad range of
protein sequences from various organisms. Examples include
models, such as ESM-1b [7] and ESM-2 [8], which use large-
scale sequence data to learn representation that can be applied
to different protein-related tasks.
Antibody-Specific pLMs: These models, such as AbLang [9]
are designed to extract antibody-specific features by training
on datasets limited to antibodies. Despite having less training
data than general pLMs, these models show better performance
on antibody-related tasks, such as B-cell classification.

III. MATERIALS AND METHODS

A. Dataset

We constructed an original dataset by collecting information
on 56 commercially available FDA-approved mAb drugs,
proposed between 1999 and 2022, from the web. In particular,
the amino acid sequences and domain information (variable
regions and Fab regions) were retrieved from the IMGT-DB
[16], a publicly accessible web database. The pH values of
these mAbs were extracted from FDA documents available
online. The dataset comprised both the amino acid sequences
and their corresponding pH values, which were used for
training and evaluating the machine learning models.

B. Baseline Construction

We compared various combinations of the following:
• Antibody Domains: We tested different antibody do-

mains, including the variable region (V), Fab region,
and full antibody (Whole), as the choice of domain can
influence the predictive performance.

• Protein Language Models: We used general pLMs, such
as ESM-1b and ESM-2, as well as the antibody-specific
pLM, AbLang.

• Heavy and Light Chain Features: After the features
extraction of each chain by the pLM, how to integrate
them into the features of the entire mAb is not obvious.
We compared the averaging (Mean) and concatenation
(Concat) of the features of both chains.

• Regression Models: We selected models commonly used
in scenarios with limited data, including Lasso [17] and
Support Vector Regression (SVR) [18].

C. Feature Engineering

We explored several feature engineering strategies to en-
hance the predictive performance:

• Using Structural Information: We aimed to enhance the
predictive performance by incorporating structural infor-
mation into pLM features. Considering novel mAbs and

the computing resources at runtime, we utilized ESMFold
[19], a fast structure prediction method. ESMFold will
be compared with AlphaFold2 [20] in the subsection of
Ablation Study.
To utilize structural information, we considered two key
aspects: solvent-accessible surface areas (SASA) and loop
regions. SASA of residues were calculated using mkdssp
[21] based on the predicted structures, and the features
were calculated by the SASA-weighted average of the
pLM vectors of each residue. Loop regions were detected
by analyzing the 3D coordinates of amino acid chains.
We defined nine residues around the vertices as loop
regions, and the features were calculated from only the
residues within the loop regions. An example of the loop
region detection results is shown in Fig. 1. We assessed
the effect of varying the number of residues considered
in the loop region (which we defined as ‘loop width’)
on performance as shown in the subsection of Ablation
Study.

• Combining Descriptors: To enhance prediction perfor-
mance, we aimed to combine descriptors that are thought
to be related to biophysical quantities with the pLM.
We tested all available descriptors from the R package
‘Peptides’ [11] and explored their combination with the
pLM features, which are represented as high-dimensional
vectors, in two ways: addition and multiplication. The
predictive performances of individual descriptors will be
discussed in the subsection of Ablation Study.

Fig. 1. Example of loop region detection. The red and blue represent heavy
and light chains, and magenta and cyan represent the respective detected loop
regions.

D. Evaluation Method

We used a 10-fold cross-validation to divide the data into
training, validation, and test sets for model training, hyper-
parameter tuning, and evaluation. The evaluation metric was
the Pearson correlation coefficient. Hyperparameter tuning was
performed using Optuna [22].

IV. RESULTS

A. Baseline Construction

The results, summarized in Table I, indicated that the
optimal combination for predicting the pH value achieved a
Pearson correlation coefficient of 0.75. The best-performing
combination was to use the variable region, perform feature
extraction using AbLang, average the feature values of the
heavy and light chains, and apply Lasso. We decided on this
combination as the baseline configuration.
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TABLE I
COMPARATIVE EXPERIMENTAL RESULTS FOR BASELINE CONSTRUCTION.

Lasso SVR
Protein Language Model Whole Fab V Whole Fab V

ESM-1b Concat 0.4305 0.4488 0.3317 0.5169 0.2988 0.3136
Mean 0.4929 0.4247 0.4386 0.4204 0.4289 0.3278

ESM-2 Concat 0.3492 0.2749 0.0728 0.1941 0.1239 0.2168
Mean 0.3830 0.3903 0.3697 0.2701 0.2393 0.2892

AbLang Concat 0.5453 0.5203 0.5493 0.6696 0.6166 0.6798
Mean 0.4471 0.3196 0.7518 0.3336 0.5046 0.6770

TABLE II
FEATURE ENGINEERING RESULTS OF COMBINING DESCRIPTORS WITH PROTEIN LANGUAGE MODEL FEATURES

Baseline With Loop Region-Aware Features
mAb Domains for Descriptors Whole Fab V

Combining methods add multiply add multiply add multiply
T2 (T-scale) 0.8535 0.8839 0.8525 0.8625 0.8451 0.7634

PP1 (Cruciani Properties) 0.8470 0.8821 0.8371 0.8193 0.8427 0.7557
VHSE2 (VHSE Scales) 0.8570 0.8817 0.8574 0.8772 0.8593 0.8721

F5 (FASGAI) 0.8482 0.8755 0.8427 0.7678 0.8815 0.2998
ProtFP4 (ProtFP) 0.8560 0.8741 0.8511 0.8738 0.8427 0.7940

B. Feature Engineering
Feature Engineering was confirmed to improve the predic-

tive performance:
• Using Structural Information: Incorporating features

based on SASA and loop regions led to improvements
over the baseline. Features based on SASA yielded the
test correlation coefficient of 0.80, while focusing on loop
regions resulted in a substantial increase to 0.85.

• Combining Descriptors: Combining pLM features with
existing descriptors also improved the performance. Due
to the large number of descriptors, only the top five
descriptors are shown in Table II. In contrast to the pLM,
the use of the whole mAb was confirmed to be the best in
the calculation of descriptors. The best configuration in
this paper was the loop region-aware features multiplied
by T2, achieving a test correlation coefficient of 0.88.

The scatter plot of the prediction results of the best config-
uration in this paper is shown in Fig. 2. The predictions of our
method were found to correlate well with the ground truth.

V. DISCUSSION

A. Baseline Construction
The best-performing combination, which achieved a test

correlation coefficient of 0.75, likely benefited from several
key factors. The use of the Lasso regression model was
particularly effective due to its feature selection capabilities
for the multi-dimensional pLM features. Using the variable
region of the antibody also proved advantageous. This region is
known to exhibit more variation between different antibodies.
Moreover, the antibody-specific language model, AbLang,
may have effectively captured these differences, leading to
improved feature characterization.

B. Feature Engineering: Using Structural Information
The improvement in predictive performance by focusing on

features extracted from residues with high solvent accessibility

Fig. 2. Scatter plots of the test folds obtained from the best configuration in
this paper.

or residues within loop regions suggests that these residues
may markedly contribute to antibody stability. This finding is
consistent with that of related research [2], [3], [10], support-
ing the importance of these structural information. SASA and
flexible loop regions may play crucial roles in the stability of
antibodies by interacting with their environment. In addition,
pLMs might lack some structural information.

C. Feature Engineering: Combining Descriptors

The enhancement in performance by combining pLM fea-
tures with descriptors indicates that existing pLMs may not
explicitly capture all relevant biophysical information. De-
scriptors provided supplementary biophysical insights that
contributed to the overall predictive performance of the model.

D. Ablation Study

To validate the robustness and reliability of our proposed
method, we conducted an ablation study to assess the impact
of various factors on predictive performance.
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TABLE III
COMPARISON OF LOOP WIDTHS.

Width 3 5 7 9 11 13 15
Corr. 0.73 0.81 0.85 0.85 0.83 0.80 0.81

Effect of Different Fold Splits: We tested 10 different fold
splits. The baseline configuration had an average correlation
coefficient of 0.7557±0.0169. The performance remained sta-
ble and close to the result of 0.75, suggesting that the choice
of splits does not markedly affect the performance, indicating
the robustness of our approach.
Impact of Loop Width: We assessed the influence of varying
the loop width on predictive performance. Although changing
the width led to some variation in performance, widths that
were not extremely small consistently resulted in better per-
formance than the baseline and the SASA (Table III). This
result supports the effectiveness of focusing on loop regions
for enhancing the predictive performance.
Comparison of ESMFold with AlphaFold2: We compared
ESMFold and AlphaFold2 for loop region detection. For Al-
phaFold2, we evaluated all five default structural predictions,
and the result was 0.84±0.01. Although the AlphaFold2 results
were slightly worse than ESMFold, they still outperformed the
baseline. The performance with ESMFold may be compara-
ble to AlphaFold2 because of the relative simplicity of the
structural features required to detect loop regions.
Performance with Descriptors Only: We assessed the perfor-
mance using only descriptors (i.e., without the pLM features).
The maximum test correlation coefficient achieved was ap-
proximately 0.4. This finding implies that the pLM provides
the high-quality features needed for pH value prediction while
the descriptors may provide supplementary information.

VI. CONCLUSION

We proposed a novel machine learning approach for pre-
dicting optimal pH values to stabilize mAbs using only their
amino acid sequences. To the best of our knowledge, this
is the first application for such task. Through a comprehen-
sive evaluation of various combinations of antibody domains,
pLMs, and regression models, we established a robust baseline
and improved the predictive performance with targeted feature
engineering. Our method highlights the potential of enhancing
the efficiency of mAb formulation by providing accurate
predictions of pH values for mAb stabilization.
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